
Big Data-Concepts, Tools and Foresight
Ravi Shaw1, Samiddha Mukherjee2, Nilanjan Haldar3, Satyasaran Changdar4

1,2,3,4 Department of Information Technology,
 Institute of Engineering & Management,

 Kolkata, India

Abstract--- The term, ‘Big Data’ in itself is self-explanatory-
colossal amounts of data that cannot be handled by traditional
data-handling techniques. Big Data is still in its infancy, and
in the following literature survey we try to elaborate the
concepts of it as conspicuously as possible. It commences with
the concept of the subject in itself along with its properties
and the two general approaches of dealing with it. The
employment of diverse frameworks to deal with copious
amounts of information such as Hadoop, MapReduce,
DryadLINQ, SCOPE, and Jaql has been put across finely. To
conclude the paper we have enlisted some of our own ideas
giving a foresight on what could be a probable solution in
solving the Big Data problem in near future. Throughout the
course of this piece of literature, the authors intend to throw
light upon the notions in the most palpable fashion
incorporating in text several use-cases and illustrations.

Keyword--- Big Data, 3 V’s, Hadoop, Pig, Hive, Hbase,
DryadLINQ, SCOPE, Jaql.

I. INTRODUCTION
According to Eron Kelly, general manager at Microsoft
SQL Server - “The amount of data produced in the next
five years will be greater than the previous 5,000 years”.
Big Data involves deriving new insight from previously
untouched data and integrating that insight into business
operations. It is an upcoming field, which with passing
time, will gain utmost importance and will be a pre-
requisite for managing business, government and individual
interests. The need of techniques to handle such massive
amounts of data is growing by the hour as the world
becomes more connected and new technological
developments occurring by the minute result in the amount
of data increasing at exponential rates. The practical
definition of Big Data engulfs in it comprehensive coding
skills, domain knowledge and statistics. Big Data is used in
the fields of marketing, scientific research, customer
interests amongst many others. This is a field which has
been under extensive research in the present decade and
several new algorithms and techniques are suggested every
now and then. The World Bank organized the first WBG
Big Data Innovation Challenge [1] in December 2014. This
competition brought forward several out-of-the-box ideas
such as using big data for climate smart agriculture and to
predict poverty and user-focused Identification of Road
Infrastructure Condition and Safety and so on and so forth.
Implementation of Big Data is a Herculean task- one
involving handling data of large volume, velocity and
variety. For the practical implementation of big data,
Hadoop is the most commonly used software. Hadoop is
not one single application but a collection of several
software apps like HDFS, Pig, Hive, HBASE etc. as
explained below. This literature survey deals with the

applications, challenges and software implementations of
big data.
What is Big Data?
“Big Data” is a term encompassing the use of techniques
to capture, process, analyze and visualize potentially large
datasets in a reasonable timeframe not accessible to
standard IT technologies. By extension, the platform, tools
and software used for this purpose are collectively called
“Big Data technologies”. [2]
In general, Big Data refers to data which due to its size,
speed and format cannot be easily stored, manipulated or
analyzed using traditional data handling algorithms and
techniques. “Every day, we create 2.5 quintillion bytes of
data — so much that 90% of the data in the world today
has been created in the last two years alone. This data
comes from everywhere: sensors used to gather climate
information, posts to social media sites, digital pictures and
videos, purchase transaction records, and cell phone GPS
signals to name a few. This data is “big data.”[3]. The
following are minute examples which deal with data of
large size, type and speed- Walmart handles more than 1
million customer transactions every hour, Facebook
handles 40 billion photos from its user base, decoding the
human genome originally took 10 years to process but now
it can be achieved in one week, CERN’s Large Hydron
Collider (LHC) generates 15 PB a year.
One way for describing Big Data is by looking at the 3 V’s
– volume, velocity and variety. Gartner analyst, Doug
Laney [4] introduced the famous 3 V’s concept back in a
2001 MetaGroup research publication, ‘3D data
management: Controlling Data Volume, Variety and
Velocity’. These three V’s are the driving dimensions of
Big Data quantification.

Fig. 1 schematic representation of the 3V’s [5] of Big Data

Ravi Shaw et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 285-291

www.ijcsit.com 285

1. Volume - Refers to the massive amount of data that is
generated with every passing second. There are many
factors which contribute to the increase in data volume. The
size of available data has been increasing, a text file is of a
few kilobytes, a sound file of a few megabytes while a full
length movie is of a few gigabytes. In the past, excessive
amount of data volume was a storage issue. But with
decreasing storage costs this problem has been tackled
while other issues have emerged over the years. The old
model of data generation/consumption was – few
companies were generating the data and all of us were
consuming the data. The new model – all of us are
generating the data and all of us are consuming the data.
This data comprises of structured data as well as
unstructured data streaming from social media sites and the
increasing amount of information from sensors. For
example, billions of smartphones generate variety
(structured as well as unstructured) of data which did not
exist a decade ago. E-commerce in particular, has exploded
data management challenges along all the three dimensions.
Petabyte sets are common these days and Exabyte is not far
away. Following are the few cases where standard
processing approaches to problems will fail due to Big Data
-

 Large Synoptic Survey Telescope (LSST): “Over 30
thousands gigabytes (30TB) of images will be generated
every night during the decade –long LSST survey sky.” [6]

 There is a corollary to Parkinson’s Law that states: “Data
expands to fill the space available for storage.”[7]

 This is no longer true since the data being generated will
soon exceed all available storage space.[8]

 31 hours of video are uploaded to YouTube every
minute.[9]

2. Velocity – With upcoming sources of data such as social
media sites and mobile applications, data is being generated
very fast. Initially, companies used to analyze data using a
batch process. This batch process works when the incoming
data rate is slower than the batch processing rate and when
the result is useful despite the delay. In this era of
smartphones, data is now streaming into the server in real
time, in a continuous fashion and the result is only useful if
the processing rate is faster. According to Facebook, its
data system processes 2.5 million pieces of content each
day amounting to 500+ terabytes of data daily. Facebook
generates 2.7 billion like actions per day and 300 million
new photos are uploaded daily. Every second, on average,
around 6,000 tweets [10] are tweeted on Twitter which
corresponds to over 350,000 tweets sent per minute, 500
million tweets per day and around 200 billion tweets per
year. Google now processes over 40,000 search queries
every second on average which translates to over 1.2
trillion searches per year worldwide [11].

3. Variety – From excel tables and databases, data is now
losing its structure to hundreds of formats. Pure text, photo,
audio, video, web, GPS data, relational databases,
documents, SMS, pdf, flash, etc... This is a decade of
smartphones, so one no longer has control over the input
data format. Structure cannot be imposed like in the past in

order to keep control over the analysis. As new applications
are introduced, new data formats come to life. Data
generated can be of any type – structured, semi-structured
or unstructured. Structured data is the most traditional type
of data, for example text. Social media sites, sensors
embedded in smartphones and satellites are few of the
many sources from which unstructured data is generated.
Google uses smartphones as sensors to determine traffic
conditions [12].
So now the question is, do we need to have all 3Vs to have
Big Data. or just one to have Big Data? It is true that if we
have all the 3V’s we definitely have Big Data but even if
any one of them is present, it is too much for the existing
standard approaches to process the data in order to give the
desired output in time. One must understand that Big Data
means that one cannot use the standard approach, as a
result of which it presents a number of special challenges
which are briefly discussed in this paper.
So the question is, how does one deal with the Big Data
problem? Among the approaches to deal with Big Data, the
following two are the most widely implemented:
1. Divide and conquer using Hadoop
2. Brute force using an “appliance” such as the SAP HANA
(HIGH- Performance Analytic Appliance).

For the brute force approach, a very powerful server with
terabytes of memory is used to crunch the data as one unit.
The data set is compressed in memory. For example, for a
Twitter data flow, that is pure text, the compression ratio
may reach up to 100:1.
In the divide and conquer approach, the huge data set is
broken into smaller parts (HDFS) and processed
(MapReduce) in a parallel fashion using thousands of
servers. The course of this paper discusses this approach in
detail.

II. TOOLS TO DEAL WITH BIG DATA
Hadoop:
Hadoop is an Apache open-source framework designed by
Doug Cutting and Mike Cafarella in 2005, for storing and
processing large amount of data using a collection of low
cost common hardware. It is extremely reliable; scalable
that can scale up to hundreds or even thousands of nodes
and is highly fault tolerant. The primary uses of Hadoop are
index web searches, email spam detection, prediction in
business and financial sectors, research oriented fields,
sentiment analysis of people using social networking sites,
and analysis of unstructured data like log files, text, click
streams, etc. Hadoop is preferable under the following
conditions:

 Complex data that needs to be processed.
 Conversion of unstructured data into structured data.
 Cases where parallel processing is needed like genome

sequencing.
 Volume of data becomes too huge to be processed by

RAM.
 Machine learning and pattern identification.
 Where different types of personalized coding are required

to fit the job.

Ravi Shaw et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 285-291

www.ijcsit.com 286

Hadoop platform mainly contains the following
components:

1) Hadoop Common: It contains libraries and utilities that

support other Hadoop modules.
2) Hadoop Distributed File System (HDFS): It is a

distributed file system that stores and retrieves data
through different clusters and provides high
accessibility and throughput to different application
programs.

3) Hadoop Yarn: Its main purpose is to schedule jobs and
manage resource among the clusters.

4) Hadoop Map-reduce: Provide parallel processing for
large volumes of data.

Hadoop Distributed File System (HDFS):
Hadoop is a distributed file system and framework, that
performs analysis of large volumes of data sets using
MapReduce programs [13]. It is highly fault tolerant as it
works on low cost hardware. It has a master slave
architecture where a single node controls a large number of
sub nodes or clusters. After receiving the data, it divides
and distributes it to different nodes in a cluster which
promotes parallel processing. Moreover, it places multiple
copies of the same data on different nodes, such that, if one
node fails then that piece of information can be found
elsewhere.

Fig. 2 The HDFS Architecture [14].

Name Node:A HDFS cluster has a name node (master
node), which contains the metadata of the clusters under it.
The name node manages each file’s namespace,
permissions, modifications and access, free space, number
of active nodes, locations of files, what data is replicated in
which data node. Each name node maintains a namespace
tree and mapping of blocks to data nodes, holding the entire
namespace image [15] in RAM, while having a cluster of
thousands of data nodes and tens of thousands of HDFS
clients. When a client wants to read a particular file it sends
a request to the name node for the location of that particular
data. Lastly each name node has a job tracker which
manages resources, task lifecycle, determines where the
fault has occurred, and allocates jobs to various task
trackers that resides in data nodes.

Fig. 3 Hadoop Client-Server Architecture [16].

Data Node:Data Nodes (slave nodes) are the ones, where
actual data resides. Each data node has a task tracker that
follows the instructions provided by the job tracker, and
updating the job tracker with its progress periodically.
During startup each data node performs a handshake to the
master node through its task tracker, to verify the
namespace id and version of the data node, and periodically
sends a heartbeat message to the job tracker to say that it is
alive and to keep the job tracker updated. If a name node
does not receive a heartbeat from a particular data node for
more than a predetermined amount of time, it considers the
data node to be inactive and initiates searching of replica of
that data in some other data node in that particular cluster.
The data nodes also interact with each other to copy, move
and keep replicas of data among themselves.

Map Reduce:
Map reduce[17] is a programming model used by Hadoop
to make parallel processing of vast amount of data efficient,
by breaking the entire task in two major process: mapping
& reducing.
In mapping, the master node reads the huge amount of
input, divides it into smaller jobs and finally distributing it
into different clusters. In the meantime, the mapper also
generates some intermediate results for reducers. The input
to the mapper is generally given in the form of a key and a
value (<key>, <value>) which is then transformed in to
another key, value. Sometimes the output can have multiple
entries of same key.
In reducing part, the master node records the outputs of
each sub-node and by shuffling and combining it generates
a new list of reduced output.

Ravi Shaw et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 285-291

www.ijcsit.com 287

Fig. 4 Word Count using MapReduce [18].

Some popular MapReduce wrappers are:

1. Pig:
Pig was originally developed at Yahoo! Research around
2006 for creating and executing MapReduce jobs on very
large data sets. In 2007, it was moved into Apache
Software Foundation. Pig was developed to allow people
using Hadoop to focus more on analyzing large data sets
and spends less time on writing mapper and reducer
programs. PIG is a scripting language that simplifies
creation of the code that can run on Hadoop. According to
Alan Gates, author of the book “Programming Pig”[19] –
‘Pig provides a higher level of abstraction for data users,
giving them access to the power and flexibility of Hadoop
without requiring them to write extensive data-processing
applications in low-level Java code.’ It provides an engine
for executing data flows in parallel on Hadoop. It includes
a language, Pig Latin, for expressing these data flows. Pig
Latin, includes operators for many of the traditional data
operations e.g. join, sort, filter, etc. as well as the ability for
users to develop their own functions for reading,
processing, and writing data. Pig is an Apache open source
project. To run the Pig on machine or in Hadoop cluster,
one must download and install it. One needs to download
the Pig Package from Apache. It comes packaged with all
of the JAR files needed to run on Pig.
Advantages:

 Programmers using Hadoop need not have to write mapper
and reducer function, thereby decreased the development
time. This is the biggest advantage.

 Anyone who does not know how to write perfect map-
reduce or SQL for that matter could pick up and can write
map-reduce jobs, therefore learning curve is not steep.

 Speaking of User defined functions (UDF), one could write
their own user defined functions in Python.

 Enjoys everything that Hadoop offers parallelization, fault-
tolerance with many relational database features.

 It is most effective tool for unstructured and messy large
datasets. It is one of the best tool to make large
unstructured data to structured.
Disadvantages:

 One of the major issues with Pig is that the errors that
produce due to UDFS (Python) are not helpful at all. Even

if the problem is related to syntax or type error it gives exec
error.

 Even though it is has been around for quite some time, it is
still in the development phase and is not mature.

 The commands are not executed unless either one dumps or
stores an intermediate or final result. This increases the
iteration between debugging and resolving the issue.

 Someone who knows SQL queries could write Hive queries
but for writing queries in Pig one needs to learn the Pig
syntax.

2. Hive:
Apache Hive is a data warehouse system for Apache
Hadoop [20]. It has been widely used in organization to
manage and process large volumes of data, such as eBay,
Facebook, LinkedIn, Spotify, Toabao, Tenant, and Yahoo!.
As an open source project, Hive has a strong technical
development team working with diverse users and
organizations. Hive team developer has solved more than
3000 issues in the recent years. With this rapid
development over the years, Hive has been significantly
updated by new innovations and research since the original
Hive Paper [21] was published four years ago. Hive is used
in 90% MapReduce programs in Facebook.
The following figure provides an overview of Hive’s
Architecture [21][18]-

Fig. 5 Hive’s Architecture [22]

Above Figure shows the major components of Hive
and its interactions with Hadoop. As shown in the
figure, the main components of Hive are:

 UI – The users submit their queries through the
interface, which is used for the other system operations
too. As of 2011, the system had a command line
interface and a web based GUI was being developed.

 Driver – This is the component which receives the
queries. This component implements the notion of
session handles and provides execute and fetch APIs
modeled on JDBC/ODBC interfaces.

 Compiler – The compiler parses the query, does
semantic analysis on the different query blocks and
query expressions and eventually generates an
execution plan with the help of the table and partition
metadata looked up from the metastore.

 Metastore- The metadata stores all the structure
information of the various tables and partitions in the

Ravi Shaw et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 285-291

www.ijcsit.com 288

warehouse including column and column type
information, the serializers and deserializers necessary
to read and write data and the corresponding HDFS
files where the data is stored.

 Execution Engine – The plan which is created by the
compiler is executed by the execution engine. The plan
is a DAG of stages. The execution engine monitors the
dependencies between these different stages of the plan
and then executes these stages on the appropriate
system components.

 HiveQL is an SQL - like query language for Hive. It
mostly mimics SQL syntax for creation of tables,
loading data into tables and querying the tables.
HiveQL also allows users to embed their custom map-
reduced scripts.

3. HBase:

HBase is an open source, distributed sorted map modeled
after Google’s BigTable [23]. HBase become first usable in
2007. Hbase is a part of Hadoop. HBase is written in Java.
HDFS is a distributed file system that is well suited for the
storage of large files. HBase, on the other hand, is built on
top of HDFS and provides fast record lookups (and
updates) for large tables. HBase uses HDFS for storage. It
is column – oriented database. Each table consists of rows,
each which has a primary key (row key). Each row may
have any number of columns. Table schema only defines
Column families (column family can have any number of
columns).In HBase each cell value has a timestamp.
Different sets of columns may have different priorities. Just
as HDFS has a NameNode and slave nodes, and
MapReduce has JobTracker and TaskTracker slaves,
HBase is built on similar concepts. In HBase a master node
manages the cluster and region servers store portions of the
tables and perform the work on the data [24]. HBase is also
sensitive to the loss of its master node.

Facebook currently uses Apache Hbase for FM as HBase
comes with very good scalability and performance for
workload and is a simpler consistency model. Facebook
Messages (FM) [25] is a messaging system that enables
Facebook users to send chat and email-like messages to one
another, it is quite popular, handling millions of messages
each day. FM stores its information within HBase and
serves as an excellent case study. Users of FM interact with
a web layer, which is backed by an application cluster,
which in turn stores data in a separate HBase cluster. The
application cluster executes FM-specific logic and caches
HBase rows while HBase itself is responsible for persisting
most data. Large objects (e.g., message attachments) are an
exception; these are stored in Haystack [26] because HBase
is inefficient for large data. This design applies Lampson’s
advice to “handle normal and worst case separately” [27].

While all this approaches were used to deal with Big Data
problem, Microsoft came up with other technologies to take
on Google’s Map-Reduce which include:

DryadLINQ:
DryadLINQ is a simple, powerful, and elegant
programming environment for writing large-scale data
parallel applications running on large PC clusters [28]. The
goal of DryadLINQ combines two important pieces of
Microsoft technology: the Dryad distributed execution
engine and the .NET Language Integrated Query (LINQ).

Dryad provides a reliable, distributed computing on
thousands of several for large-scale data parallel
applications. LINQ enables developers to write and debug
their applications in a SQL-like query language, relying on
the entire .NET library and using Visual Studio. The term
LINQ [29] refers to a set of .NET constructs for
manipulating sets and sequences of data items.

Fig. 6 The flow of execution when a program is executed

by DryadLINQ [30].

DryadLINQ has the following features [31]:
 Declarative programming: The best features of SQL,

functional programming and .Net are combined so that
computations can be expressed in high-level language.

 Automatic parallelization: From sequential declarative
code the DryadLINQ compiler generates highly parallel
query plans spanning large computer clusters. DryadLINQ
also exploits multi-core parallelism on each machine.

 Integration with Visual Studio: Programmers in
DryadLINQ take advantage of the comprehensive VS set of
tools: Intellisense, code refactoring, integrated debugging,
build, source code management.

 Integration with .Net: All .Net libraries, Visual Basic and
dynamic languages are included.

 Job graph optimizations:This optimization is done in static
and dynamic as follows-

 Static: A rich set of term-rewriting query optimization rules
is applied to the query plan, optimizing locality and
improving performance.

 Dynamic: Run-time query plan optimizations automatically
adapt the plan taking into account the statistics of the data
set processed.

Ravi Shaw et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 285-291

www.ijcsit.com 289

SCOPE:
SCOPE stands for “Structured Computations Optimized for
Parallel Execution”. SCOPE/COSMOS provides storage
and computation for Back-End Batch data analysis of
Microsoft’s BING application. It is hybrid parallel database
and MapReduce system. SCOPE is a SQL-like declarative
language, which is highly extensible and flexible. SCOPE
is fully integrated with .NET framework. Cosmos Storage
System append-only distributed file system for storing
petabytes of data. It is optimized for sequential I/O. The
inside the storage system is compressed and replicated.
System complexity and parallelism are hidden from the
users.

Fig. 7 Working of SCOPE [32].

SCOPE/Cosmos is a hybrid system of MapReduce and
traditional parallel database. It is extensively used in cloud-
scale data centers at Microsoft Bing. SCOPE seamlessly
integrates optimization of both serial and parallel plans into
a single uniform framework.

Jaql:
To address the needs of enterprise customers, IBM recently
released InfoSphere BigInsights [33] and Cognos
Consumer Insights [34] (CCI). Both BigInsights and CCI
are based on Hadoop and include analysis flows that are
much more diverse than those typically found in a SQL
warehouse. Among other things, there are analysis flows to
annotate and index intranet crawls [35], clean and integrate
financial data [36,37], and predict consumer behavior [38].
 Jaql, which is a declarative scripting language used in both
BigInsights an CCI to analyze large semi-structured
datasets in parallel on Hadoop. Jaql’s data model is based
on JSON, which is a simple format and standard (RFC
4217) for semi structured data. The main goal of Jaql is to
simplify the task of writing analysis flows by allowing
developers to work at a higher level of abstraction than
low-level MapReduce programs. Jaql consists of a scripting
language and compiler, as well as a runtime component for
Hadoop, but we will refer to all three as simply Jaql. Jaql’s
design has been influenced by Pig [39], Hive [40],
DryadLINQ [41], among others, but has a unique focus on

the following combination of core features: (1) a flexible
data model, (2) reusable and modular scripts, (3) the ability
to specify scripts at varying levels of abstraction, referred
to as physical transparency, and (4) scalability.

III. AUTHORS’ PROPHECY
The three most important differentiators of Big Data as
discussed previously, are volume, velocity and variety.
However in the upcoming era, the more competitive
differentiator will become velocity rather than volume.
IBM’s sixth annual analytics study in 2014 emphasized on
this aspect apart from several others.
Like Big Data, another of the popular buzzwords today is
Internet of Things. Everything that surrounds our life and
makes it easier, be it our vehicles or our homes or any other
major appliance that we use in our day to day functioning
are now at all points of time connected to the Internet thus
creating a sort of a network which is what is called the
Internet of Things. These vast number of interconnected
devices generate incessant streams of data wherein lies the
scope of Big Data analytics. Like the smartphone which
became a surreal reality only in the last decade, Internet of
Things is the next big superstar of our world. We believe
that once IoT is realized, analyzing the massive quantities
of data which will be generated due to this, will be a
challenge in itself and the present available solutions will
not be sufficient.
As we have discussed earlier, there are two popular
methods that till today are used to deal with Big Data. One
of which is the Divide and Conquer method as used by
Apache Hadoop whilst the other one is the Brute Force
method where large chunks of data is crunched into smaller
data which is employed by SAP in its trademark
‘appliance’ SAP-HANA. While the two methods are as of
now being implemented individually, they are not sufficient
for the humungous amount of data that will be generated
every second in the next few coming years.
Having made such an exhaustive research on the present
scenario of Big Data, we suggest the following probable
solution-
Though individually applying any of the above two
solutions may not solve the upcoming problem, an
amalgamation of the two processes in a cognizant manner
may be helpful in the field. However there are a few
postulates that needs to be considered- At present the brute
force method can only compress a few terabytes of data
into a few gigabytes. However the rate at which data will
be generated, it is essential that the compressing techniques
be made more competent and capable of scaling-down data
in a much larger ratio. We believe that the velocity of such
compression must be bettered by leaps as compared to the
present rate. The algorithms that we currently possess
knowledge of, to implement the divide and conquer
approach may be efficient for the present requirements.
However, as the requirements increase exponentially, we
suggest developing more potent algorithms which will
optimize the data according to the project.
As the data pours in, we suggest that the data first be
compressed to a considerable amount using the brute force
method. After the compression has been executed

Ravi Shaw et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 285-291

www.ijcsit.com 290

efficiently, the data should be processed using the divide
and conquer approach to produce required results.
Implementing this will considerably reduce the weight of
the data generated and will produce optimized results as
required.
Though there are a few ideas like this floating around but
given the massive amounts of data which will generated in
the upcoming days because of addition of IoT, and
scientific and technological advancements, they are not at
par with the upcoming requirements. This integration of the
two processes needs to be made far more advanced in
comparison to already available technology. We emphasize
that this amalgamation be given utmost importance with
respect to developing the technology and making it
available comprehensibly to one and all with simplified
architecture as it is the need of the hour.

IV. CONCLUSIONS
This literature survey traces the course of Big Data from its
initiation to the present state. It elucidates the concepts of
big data, its applications and popular tools to deal with Big
Data. It discusses elaborately the challenges faced by Big
Data and the future opportunities that could be harnessed.
Big Data is an evolving field, where much of the research is
yet to be done. At present, the most common
implementation of this field has been via Hadoop. However
with the exponentially proliferating amount of data, more
pragmatic solutions to this issue needs to be fostered.
In the final section of the research report, we have hinted
on a possible key to solving big data’s big problem in the
impending future. With the copious amounts of data which
will be generated once we enter into the era of Internet of
Things hook, line and sinker and progress in the fields of
science and technology, finding an appropriate solution is a
matter of immediate concern. We have suggested
amalgamating the two most popular approaches to Big
Data- the brute force method and the divide and conquer
approach. Conjoining the two techniques to produce an
approach which at first compresses the data and then
applies the divide and conquer method to it can help us
tackle the massive amounts of data which will be generated
by a considerable amount.
To conclude, Peter Sondergaard, Senior Vice President of
Gartner Research famously stated, “Information is the oil of
the 21st century and analytics is the combustion engine.”

 REFERENCES
[1] http://blogs.worldbank.org/voices/meet-winners-and-finalists-first-

wbg-big-data-innovation-challenge
[2] Grand Challenge: Applying Regulatory Science and Big Data to

Improve Medical Device Innovation, Arthur G. Erdman∗, Daniel F.
Keefe, Senior Member, IEEE, and Randall Schiestl, IEEE
TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 19,
NO. 3, MARCH 2013

[3] Apache Hive. Available at http://hive.apache.org
[4] http://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-

data-definition-consists-of-three-parts-not-to-be-confused-with-
three-vs/

[5] http://www.exist.com/wp-content/uploads/2014/10/3Vsbigdata.png
[6] http://lsst.org/lsst/google
[7] http://en.wikipedia.org/wiki/Parkinson’s_law
[8] http://www.economist.com/node/11412343

[9] http://www.youtube.com/t/press_statistics/?hl=en
[10] http://www.internetlivestats.com/twitter-statistics/
[11] http://www.internetlivestats.com/google-search-statistics/
[12] http://www.wired.com/autopia/2011/03/cell-phone-networks-and-

the-fu...
 [13] Jeffrey Dean and Sanjay Ghemawat: "MapReduce: Simplified Data

Processing on Large Clusters". Proc. Sixth Symposium on Operating
System Design and Implementation 2004.

[14] http://hadoop.apache.org/docs/r1.2.1/images/hdfsarchitecture.gif
[15] 8.2.2 (http://www.aosabook.org/en/hdfs.html)
[16] http://bradhedlund.s3.amazonaws.com/2011/hadoop-network-

intro/Hadoop-Server-Roles-s.png
[17] Jefry Dean and Sanjay Ghemwat, MapReduce:A Flexible Data

Processing Tool, Communications of the ACM, Volume 53,
Issuse.1,January 2010, pp 31-36.

[18]http://www.rabidgremlin.com/data20/MapReduceWordCountOvervie
w1.png

[19] Alan Gates, Programming Pig
[20] http://hadoop.apache.org/.
[21] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,N. Zhang, S.

Anthony, H. Liu, and R. Murthy. Hive – A Petabyte Scale Data
Warehouse Using Hadoop. In ICDE,2010.

[22] https://cwiki.apache.org/confluence/display/Hive/Design
[23] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh,Deborah A.Wallach, Michael Burrows, Tushar Chandra,
Andrew Fikes, and Robert Gruber. Bigtable: A Distributed Storage
Systemfor Structured Data. In Proceedings of the 7th Symposiumon
Operating Systems Design and Implementation (OSDI ’06),pages
205–218, Seattle, Washington, November 2006.

[24] Apache HBase. Available at http://hbase.apache.org
[25] Kannan Muthukkaruppan. Storage Infrastructure Behind Facebook

Messages. In Proceedings of International Workshop on High
Performance Transaction Systems (HPTS ’11), Pacific Grove,
California, October 2011.

[26] Jason Sobel. Needle in a haystack: Efficient storage of billions of
photos. http://www.flowgram.com/p/2qi3k8eicrfgkv, June 2008.

[27] Butler W. Lampson. Hints for Computer System Design. In
Proceedings of the 9th ACMSymposium on Operating System
Principles (SOSP ’83), pages 33–48, Bretton Woods, New
Hampshire, October 1983.

[28] http://research.microsoft.com/en-us/projects/DryadLINQ/
[29]https://cs.uwaterloo.ca/~kmsalem/courses/CS848W10/presentations/A

luc-Scope.pdf
[30]https://www.usenix.org/legacy/events/osdi08/tech/full_papers/yu_y/yu

_y_html/systemoverview.jpg
[31] http://research.microsoft.com/en-us/projects/DryadLINQ/
[32]https://cs.uwaterloo.ca/~kmsalem/courses/CS848W10/presentations/A

luc-Scope.pdf
[33] Biginsights. http://www-01.ibm.com/software/data/

infosphere/biginsights/
[34] Cognos Consumer Insight. http: //www-

01.ibm.com/software/analytics/cognos/ analytic-
applications/consumer-insight/.

[35] K. S. Beyer, V. Ercegovac, R. Krishnamurthy, S. Raghavan, et al.
Towards a Scalable Enterprise Content Analytics Platform. IEEE
Data Eng. Bull., 32(1):28–35, 2009.

[36] S. Balakrishnan, V. Chu, M. A. Hernandez, H. Ho, et al. ´ Midas:
Integrating Public Financial Data. In SIGMOD, pages 1187–1190,
2010.

[37] A. Sala, C. Lin, and H. Ho. Midas for Government: Integration of
Government Spending Data on Hadoop. In ICDEW, pages 122 –125,
2010.

[38] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, et al. Ricardo:
Integrating R and Hadoop. In SIGMOD, pages 987–998, 2010.

[39] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A Not-So-Foreign Language for Data Processing. In
SIGMOD, pages 1099–1110, 2008.

[40] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, et al. Hive - A
Warehousing Solution Over a Map-Reduce Framework. PVLDB,
2(2):1216–1219, 2009

[41] Y. Yu, M. Isard, D. Fetterly, M. Budiu, et al. DryadLINQ: A System
for General-Purpose Distributed Data-Parallel Computing Using a
High-Level Language. In OSDI, pages 1–14, 2008.

Ravi Shaw et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 285-291

www.ijcsit.com 291

